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Autophagy is a process for the bulk degradation of proteins, in
which cytoplasmic components of the cell are enclosed by double-
membrane structures known as autophagosomes for delivery to
lysosomes or vacuoles for degradation1–4. This process is crucial
for survival during starvation and cell differentiation. No mol-
ecules have been identified that are involved in autophagy in

higher eukaryotes. We have isolated 14 autophagy-defective (apg)
mutants of the yeast Saccharomyces cerevisiae5 and examined the
autophagic process at the molecular level6–9. We show here that a
unique covalent-modification system is essential for autophagy to
occur. The carboxy-terminal glycine residue of Apg12, a 186-
amino-acid protein, is conjugated to a lysine at residue 149 of
Apg5, a 294-amino-acid protein. Of the apg mutants, we found
that apg7 and apg10 were unable to form an Apg5/Apg12 con-
jugate. By cloning APG7, we discovered that Apg7 is a ubiquitin-
E1-like enzyme. This conjugation can be reconstituted in vitro
and depends on ATP. To our knowledge, this is the first report of a
protein unrelated to ubiquitin that uses a ubiquitination-like
conjugation system. Furthermore, Apg5 and Apg12 have mam-
malian homologues, suggesting that this new modification system
is conserved from yeast to mammalian cells.

In yeast, autophagy is induced by various starvation conditions,
and its progression is easily monitored under a light microscope1:
when wild-type cells were cultured under nitrogen-starvation con-
ditions in the presence of phenylmethylsulphonyl fluoride (PMSF),
autophagic bodies accumulated in the vacuoles (arrows in Fig. 1a).
The apg12-1 mutant did not accumulate autophagic bodies during
starvation. We cloned the APG12 gene by the method described
previously7,8. APG12 encodes a hydrophilic protein of 186 amino
acids with a predicted relative molecular mass (Mr) of 21K (Fig. 1b).

Figure 1 Cloning of APG12 and phenotype of apg12 disruptant. a, Wild-type,

apg12-1 mutant and Dapg12 cells were cultured in nitrogen-starvation medium

containing 1 mM PMSF. After incubation for 6 h, cells were observed under a

phase-contrast microscope. Arrows indicate autophagic bodies. b, Amino-acid

sequence of Apg12. c, Wild-type (squares) and Dapg12 (circles) were cultured in

nitrogen-starvation medium and their viability was determined by phloxine B

staining5. d, Quantification of autophagic activity of wild-type and Dapg12 cells by

alkaline phosphatase (ALP) assay before (black bars) and after (white bars)

nitrogen starvation for 4 h. Error bars indicate s.d. of three independent

experiments. e, Homology between Apg12 and potential human and C. elegans\-

counterparts. C. elegans U32305 is 46% similar and 22% identical to amino acids

67–186 of yeast Apg12. A human cDNA (THC173313) encodes a protein that is

59% similar and 32% identical to amino acids 102–186 of Apg12.
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Gene disruption experiments revealed that APG12 is not essential
for growth (data not shown) but is essential for autophagy (Fig. 1a)
and for maintaining viability during starvation (Fig. 1c). We
confirmed this in an assay system for measuring autophagic activity
(Fig. 1d), in which a truncated form of pro-alkaline phosphatase
expressed in the cytoplasm was delivered to vacuoles in an autop-
hagy-dependent manner and processed to the active enzyme10. A
vacuolar enzyme, aminopeptidase I, is delivered from the cytoplasm
to vacuoles constitutively to yield the mature, active enzyme11. This
‘Cvt pathway’ is closely linked to the autophagic process12, and all
apg mutants13, including Dapg12 cells, show defects in this pathway
(see Fig. 3d). The amino-acid sequence of Apg12 did not provide
any insight into its function, but a BLAST search identified a
potential Caenorhabditis elegans homologue whose function is
unknown (Fig. 1e). In addition, a search of the EST (expressed-
sequence tag) database identified several cDNA fragments encoding
parts of a potential human homologue (Fig. 1e).

To detect Apg12, we constructed a 3 × haemagglutinin(HA)-
tagged APG12. On immunoblotting, Apg12 presented as a ladder of
bands between 31K–32.5K (Fig. 2a). As phosphatase treatment of
the lysate yielded a single band at 31K representing tagged Apg12
(data not shown), we concluded that Apg12 is phosphorylated in
vivo. Furthermore, we found that about half of the Apg12 was
present as a much larger band of ,70K (asterisked in Fig. 2a, b).
Although the 31K Apg12 was detected in all apg mutant strains, the
Dapg5, apg7-1 and apg10-1 strains did not show the 70K band
(Fig. 2b; Dapg1 is representative of the other mutants). These results
indicate that these three APG products are essential for the genera-
tion of the 70K band.

We have previously shown that the APG5 gene encodes a 294-
amino-acid protein6. Immunoblot analysis of 1 × HA-tagged Apg5
indicated that it also generated two bands in nearly equal amounts,
one of the size of tagged Apg5 (32.5K) and the other at about 70K
(Fig. 2c). In the Dapg12 strain, the higher band was not seen,
whereas the 32.5K band of Apg5 was slightly increased (Fig. 2c).
Immunoprecipitation analysis revealed that the 70K band included
both Apg5 and Apg12 (Fig. 2d). We concluded that it was a one-to-
one conjugate of Apg5 and Apg12.

To characterize the 70K band further, we did mutagenic analysis
of Apg12 (Fig. 3a). We found that the carboxy-terminal portion of
Apg12 was important for the conjugation (Fig. 3b: D57 and D121).
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Even a single Gly 186 deletion at the C terminus (Apg12DG) caused
complete loss of the Apg12/Apg5 conjugate, although free Apg12DG
was detected in an amount comparable to that in the wild type
(Fig. 3b: DG). Apg12G186A, in which the Gly 186 is replaced by
alanine, was incorporated into the higher band inefficiently, but still
significantly (Fig. 3b: G186A). This indicates that Gly 186 is impor-
tant for Apg5/Apg12 conjugation. We next assessed the functional
activities of these mutants. Apg12DG showed an Apg-negative
phenotype (Fig. 3c), and was also unable to produce mature
aminopeptidase I (Fig. 3d), indicating that the Apg5/Apg12 con-
jugate is required for both autophagy and cytosol-to-vacuole
targeting of this enzyme. The Apg12G186A mutant showed an
almost normal phenotype for autophagy and for maturation of
aminopeptidase I (Fig. 3c, d), suggesting that a small amount of
Agp5/Apg12 conjugate is enough for it to function normally.

By analogy with ubiquitin14–16, conjugation of Apg5 and Apg12
probably occurs through formation of an isopeptide bond between
the C-terminal Gly 186 of Apg12 and an e-amino group of one of the
19 lysine residues in Apg5. To test this, we systematically replaced
each lysine residue of Apg5 with arginine. Both free Apg5 and the
Apg5/Apg12 conjugate were detected in 18 mutants (data not
shown). The Apg5K149R variant had no conjugate at all, but a
higher amount of free Apg5K149R (Fig. 4a, b), indicating that the
Lys 149 residue of Apg5 is the acceptor site for Apg12 conjugation.
As expected, Apg5K149R was defective in both autophagy and in
generating mature aminopeptidase I (Fig. 4c, d), whereas the other
18 mutants were normal (data not shown). Starvation did not alter
the relative amounts of free Apg5, free Apg12 or of the Apg5/Apg12
conjugate. We conclude that the conjugate functions as a common
machinery in both pathways: for the autophagic pathway during
starvation and for the Cvt pathway in the growing phase.

As shown in Fig. 2, the apg7 and apg10 mutants failed to
conjugate Apg5 and Apg12, suggesting that these two APG products

may function as an enzyme system for conjugation. Cloning of the
APG7 gene revealed that it encodes a 630-amino-acid protein with
predicted Mr of 71.4K (Fig. 5a). The region containing amino acids
322–392 of Apg7 shows significant homology with the correspond-
ing region in E1, the ubiquitin-activating enzyme in S. cerevisiae
(Fig. 5b) and in other species (data not shown). This region
encompasses a putative ATP-binding site (GxGxxG)17, suggesting
that Apg7 may be an Apg12-activating enzyme. Although the
sequence around the active-site cysteine is less conserved, align-
ments between Apg7 and other E1-like enzymes indicate that
Cys 507 is a putative active-site cysteine (Fig. 5b). Apg10 might be
an E2 ubiquitin-conjugating enzyme type of protein because its size
is similar to various E2 enzymes and one of its cysteine residues is
essential for its function (T. Shintani et al., unpublished results). We
reconstituted the conjugation reaction in vitro. Lysates of Dapg5
cells and Dapg12 cells were mixed in vitro and incubated with or
without ATP. Figure 5c shows that the 70K band appeared in a time-
dependent and ATP-dependent manner. The conjugation was
sensitive to 1 mM N-ethylmaleimide (data not shown). These
results show that the Apg12 conjugation pathway contains an
ATP-dependent step, which is probably the activation of Apg12 by
Apg7.

Autophagy involves a dynamic membrane rearrangement2–4.
Morphological studies have indicated that all APG products func-
tion at or before the autophagosome formation step (M. Baba and
Y.O., unpublished results). Some Apg proteins are present on
membrane structures9. Most of the Apg5 and Apg5/Apg12 con-
jugate, and more than half of the free Apg12, were present in
100,000g pellet fractions (data not shown), suggesting that they
associate with some membrane compartments. We therefore exam-
ined their intracellular localization by sucrose density-gradient
centrifugation analysis and found that free Apg5 and the Apg5/
Apg12 conjugate co-fractionated (Fig. 6); in contrast, most of the
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Apg12 was in the denser fractions. These results indicate that the
conjugation of Apg5 and Apg12 is associated with a change in the
subcellular localization of Apg12.

We have described a new covalent modification system that is
required for autophagy in yeast. Four of 14 APG products function
in this pathway. Our model is shown in Fig. 7: Apg12 is activated by
binding to Apg7 via a high-energy thioester bond; through transfer
to an E2-like molecule (possibly Apg10), Apg12 is finally conjugated
to Lys 149 of Apg5 via an isopeptide bond. Although the steps in this
conjugation pathway are similar to those that occur in ubiquitina-
tion14–16 and in the modification by other ubiquitin-like proteins
such as SUMO-1 (refs 18–21), Smt3 (ref. 22), Rub1 (refs 23, 24) and
Nedd8 (ref. 25), Apg12 has several unique features. It has no
significant homology to ubiquitin and is much larger than ubiquitin
and ubiquitin-related modifiers18–25. Only a single specific substrate,
Apg5, has been found. Apg12 homologues in human and C. elegans
have a glycine residue at the C terminus (Fig. 1c). We have cloned
human Apg12 and found that it is conjugated to human Apg5
(N.M., H. Sugita, T.Y. and Y.O., manuscript in preparation). Human
Apg5 was recently cloned as ‘apoptosis specific protein’ by another
group26, although its physiological significance is not clear yet. This
conjugation system is conserved from yeast to mammalian cells, and
may be critical for autophagy in every eukaryote. M
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Methods

Yeast strains. The Saccharomyces cerevisiae strains used for cloning and
immunochemical analysis were MT3-4-4(MATa apg12-1 ura3), MT87-4-
5(MATa apg7-1 ura3), MT91-4-2(MATa apg10-1 ura3), SKD5-1D(MATa ura3
leu2 trp1 Dapg5::LEU2) and YYK36(MATa ura3 leu2 trp1 his3 Dapg1::LEU2).
Gene disruptions of APG5 and APG12 were performed with YW5-1B(MATa
ura3 leu2 trp1) or KA31(MATa ura3 leu2 trp1 his3).
Alkaline phosphatase assay. The APG12 or APG5 gene was disrupted in
TN125(MATa ura3 leu2 trp1 his3 ade2 lys2 PHO8::pho8D60), and the assay was
done as described27.
Immunochemical procedures. Whole-cell extracts were prepared by
suspending cells in 0.2 M NaOH, 0.5% b-mercaptoethanol, and precipitated
with acetone. Extracts were separated by SDS–PAGE, followed by immuno-
blotting using anti-HA antibody (16B12, BAbCO) or anti-API (aminopepti-
dase I) polyclonal antibody. Immunoprecipitation was done as described28

using 16B12 or anti-Myc antibody (9E10).
Site-directedmutagenesis. Mutation and deletion constructs were generated
by PCR-based site-directed mutagenesis and confirmed by automated DNA
sequencing.
In vitro Apg12 conjugation assay. Total cell lysates were prepared from
Dapg12 strain expressing HA-Apg5 and Dapg5 strain expressing HA-Apg12
after spheroplasting. Both lysates (30 mg ml−1) were mixed in 50 mM Tris (pH
7.5), 100 mM NaCl, 10 mM MgCl2, 1 mM DTT, 0.3 mM PMSF and 2 mg ml−1

pepstatin, and incubated at 30 8C for the indicated times with or without 5 mM
ATP. The reaction was stopped by mixing with SDS–PAGE buffer and boiling.
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Retinoids regulate gene expression through the action of retinoic
acid receptors (RARs) and retinoid-X receptors (RXRs), which
both belong to the family of nuclear hormone receptors1,2. Reti-
noids are of fundamental importance during development2, but it
has been difficult to assess the distribution of ligand-activated
receptors in vivo. This is particularly the case for RXR, which is a
critical unliganded auxiliary protein for several nuclear receptors,
including RAR1, but its ligand-activated role in vivo remains
uncertain. Here we describe an assay in transgenic mice, based
on the expression of an effector fusion protein linking the ligand-
binding domain of either RXR or RAR to the yeast Gal4 DNA-
binding domain, and the in situ detection of ligand-activated
effector proteins by using an inducible transgenic lacZ reporter
gene. We detect receptor activation in the spinal cord in a pattern
that indicates that the receptor functions in the maturation of
limb-innervating motor neurons. Our results reveal a specific
activation pattern of Gal4–RXR which indicates that RXR is a
critical bona fide receptor in the developing spinal cord.

Ligands for retinoid receptors are all-trans retinoic acid (RA),
which binds to RAR, and 9-cis RA, which binds both RAR and


